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1 Abstract

In this paper we propose a new scaling law for wide area network traffic, based on
some observation of Paxson and coworkers [1] Leland and coworkers [2] Crovella
and Bestavros [3] as well as on the work of West and co-workers [4, 5].

Paxson and coworkers found that network arrivals are modeled very well by
self-similar processes rather than the usual Poisson processes used so far. West
and coworkers have shown that biological systems which have a network flow in
them display a remarkable property in that many biological quantities can be
described by a simple scaling law.

We propose then that network traffic should be modeled by a scaling law
where network traffic dependent quantities scale as integer multiples of 1

3 power
of size of the network.
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2 Introduction

Several papers have studied recently the nature of network traffic, both local
area network (LAN) and WAN. The primary focus of these papers has been
the nature of the distribution of traffic. Specifically, the papers which will be
discussed here question the received notion that this traffic has a Poisson dis-
tribution, and have found instead that the traffic has a self-similar distribution.

We put forward here a new hypothesis, regarding the functional form of this
traffic. Specifically, we propose that this traffic depends on the number of nodes
or hosts present in the network, and we propose that this functional form is

Y = cNβ

where Y is some network dependent variable, c is some constant, N is the
number of hosts (IP addresses) on the net, and β is the scaling exponent. Basing
our work on that of West and co-workers, we advance the hypothesis that in
WAN traffic, this exponent is 1

3 .
The outline of the paper is as follows: first, we will discuss some of the earlier

work on LAN traffic initiated by Leland and co-workers [2]; next, we present
the work on WAN traffic of Paxson and Floyd [1]; after that, we present the
work on allometric scaling of West and co-workers [4, 5]; we then discuss recent
work on self-similarity in WWW traffic of Crovella and Bestavros [3]; finally,
we put all this together and see how this leads us to formulate the scaling law
mentioned above.
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3 LAN Traffic Studies

The first work we will study is that of Leland and co-workers [2] on the self-
similar nature of Ethernet traffic. The work was based on data collected between
August 1989 and February 1992 at Bellcore Morristown Research and Engineer-
ing Center.

Let us first direct the reader to a visual representation of this self-similarity:
Figure 4 of [2] show that plotting packets/time unit versus time in time units
of 0.01 sec, 0.1 sec, sec, 10 sec and 100 sec show all the same shape, being quite
bursty. This differs strongly from the shape of packets/time unit versus time
had the traffic a Poisson, distribution when we would expect a rather different
behavior for different time units.

We introduce now a more formal, mathematical definition of self-similarity.
We introduce a stochastic process

X = Xt : t = 0, 1, 2, ...

with an auto correlation of the form

r(k) = k−βL(t), k −− >∞

where 0 < β < 1 and L is slowly varying at infinity. One implication of
self-similar processes is that if there is a spectral function f(.), it would obey a
power law near the origin

f(λ) = const.λγ

with 0 < γ < 1 and γ = 1− β .
The authors use two formal mathematical models to represent self-similar

processes: fractional Gaussian noise and fractional autoregressive integrated
moving-average (ARIMA) processes. The latter has an auto correlation of the
form

r(k) =
1
2
{
|k + 1|2H − |k|2H + |k − 1|2H

}
k > 0

where the self-similarity Hurst parameter H is 1
2 < H < 1. Calculations

show that H = 1− β
2 .

Leland and co-workers found that the Ethernet traffic data is best described
by H = 0.84 and γ = 0.66. This corresponds to β = 0.33. Figure 5 of [2] shows
a more detail measurement of H, with its value fluctuating very little about
0.84.

The authors of [2] don’t give a mechanism or hypothesize why the traf-
fic might be self-similar, but they find that Ethernet LAN is statistically self-
similar; the degree of self-similarity is well measured by Hurst’s parameter H,
with burstier traffic corresponding to higher H; external LAN and external TCP
traffic also seem to have a self-similar characteristics as the overall LAN traf-
fic; the packet traffic models currently considered in literature are not able to
capture the self-similar property - perhaps they should?!
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4 WAN Traffic Studies

We now proceed to look at the work of Paxson and Floyd [1], which looked at
wide area network traffic. Taking as their starting point the work of Leland
and co-workers [2] described above, the authors looked at TELNET and FTP
sessions from 24 traces involving data gathered at LBL, DEC WRL, Bellcore,
UCB, coNCert, as well as data from UK. The authors find that for WAN traffic,
connection arrivals are well-modeled by Poisson processes, but that for packet
arrivals, self-similar processes model the data much better.

In more detail, TELNET connection arrivals are well-modeled by Poisson
models, but TELNET packets are better modeled by self-similar processes. FTP
connection arrivals is not well modeled by Poisson models and FTP packets
arrivals is also better modeled by self-similar processes.

Paxson and Floyd use large-scale correlations as a measure of self-similarity.
They define a signal as having long-range dependence if the auto correlation
function r(k) diverges ∑

k

r(k) =∞

The authors propose several methods for the production of self-similar traffic:
multiplexing On/OFF that have a fixed rate in the ON period and ON/OFF
period lengths that are heavy-tailed; M/G/∞ queue model, where customers
arrive according to a Poisson process and have service time drawn from a heavy-
tailed distribution with infinite variance. This discussion is beyond the scope of
this paper.

Unfortunately, the authors do not give semi-analytic forms of the traffic,
against which we could test our hypothesis. But a look at Figure 5 of [1] gives
a value for the variance of the data of −0.33 rather than −1 as expected from
Poisson processes. We get a similar value from the data in Figures 7, Figures
12, and 13 of [1].

The authors conclude that we should abandon Poisson models of WAN for
most traffic except user session arrivals. They also suggest that multiplexed
TCP and all-protocol traffic might be described very well by self-similar pro-
cesses.
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5 Allometric Scaling Laws in Biology

West and collaborators [5] study a large body of data from biology which shows
that a biological variable Y depends on the body mass M in an allometric
scaling way

Y = cMβ

where β is a scaling exponent and the constant in front depends on charac-
teristics of the organism. If these relations reflect geometric constraints, β is a
simple multiple of 1

3 . But much biological data is more consistent with β being
a multiple of 1

4 .
The authors of [5] proceed to show that with three rather simple assump-

tions, we can obtain this result. They introduce these assumptions: One, a
space-filling fractal branching pattern is required for the network to supply the
entire volume of the organism; Second, the final branch of the network is a
size-invariant unit; and Third, the energy required to distribute resources is
minimized.

Let us follow the authors’ arguments. Following them, we introduce typical
lengths lk and radii rk for the branches of the network. The volume rate flow
is defined by

∂Qk
∂t

= πr2
kuk

where uk is the average flow velocity. Each level k has nk branches, so at
this level the total number of branches is Nk = n0n1...nk . The special terminal
units are size invariant, and are defined by radius rc, length lc and average flow
velocity uc.

They show that

∂Q0

∂t
= B = Ma = Nk

∂Qk
∂t

= Nkπr
2
kuk = Ncπr

2
cuc

so that Nc = Ma.
They introduce then scale factors δk = rk+1

rk
and γk = lk+1

lk
.

For self-similar fractals, δk = δ , γk = γ and nk = n. Thus, Nk = nk, so
Nc = nN .

Let us study now the behavior of total volume of fluid in the network.

Vb =
∑
k

NkVk =
∑
k

πr2
klknk

Vb =
V0

(1− nγδ2)
=
Vc(γδ2)−N

(1− nγδ2)

It can be shown that Vb = M so that (γδ2)−N = M so that

a =
−ln(n)
ln(γδ2)
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Let us look now at what can we learn about δ and γ . The first hypothesis,
the existence of a space-filling implies that the size of the network is best de-
scribed by lk >> rk. with a volume at the k-th level of 4

3π( lk2 )3Nk. The third
condition, energy minimization, can imply that the flow if volume preserving or
area preserving. Volume preservation for space-filling means that

4
3
π(
lk
2

)3Nk =
4
3
π(
lk+1

2
)3Nk+1

so γ3
k = ( lk+1

lk
)3 = Nk

Nk+1
= 1

n , so γk = n−
1
3 = γ.

Area preserving flow has quite different implications. We have πr2
k = nπr2

k+1,
or δk = rk+1

rk
= n−

1
2 = δ, γ = n−

1
2 . This implies, with γ = n−

1
3 , that a = 3

4
and

B = M
3
4 , r0 = M

3
8 , l0 = M

1
4

.
The authors of this work argue that in biological systems we have area pre-

serving flow, so that we get scaling with multiples of 1
4 . Table 1 of [5] supports

this hypothesis amply, with many cardiovascular and respiratory quantities ex-
plained well by the quarter law. They also point out that this is a fractal of
dimension D = 3, where a = D

D+1 = 3
4 .

6 WWW Traffic Studies

Crovella and Bestavros [3] pick up where Leland and co-workers left off, and
examine WAN traffic on the World Wide Web (WWW). Their data was gathered
between January and February of 1995. Table 1 of [3] describes the data used.
They use the same formalism discussed in this paper already.

The data they gathered seems to imply a value of H = 0.83, or a value of
the auto correlation exponent β = 0.33. They also analyze the specific times
associated with file transfers. For all file transfers, they obtain α = 1.27 or
H = 0.87 so β = 0.27. For text files only, though, they get α = 1.59, or
H = 0.70 or β = 0.59. Here, H = (3−α)

2 , so α = 1 + β.
The model they use for explaining the nature of the WWW traffic is that

introduced by Paxson and Floyd [1], discussed above, regarding multiplexed
ON/OFF sources. For ON times, they observe α = 1.0 − 1.3 or β = 0 − 0.3,
while for the OFF times, α = 1.5 or β = 0.5, so it seems that the ON times is
responsible for the self-similar traffic.
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7 Scaling Laws in Network Traffic

We are ready now to propose our model. We use as our foundation the analysis
of West and co-workers [5].

We will model our computer network as a network of switches/hubs with
ports pk. Signals are transported by this network from port to port.

We will make several assumptions about this network: First, to supply all
the ports with signal, it has a fractal branching pattern; Second, the final branch
of the network, like the end port on a desktop or other computer, is of roughly
the same network throughput; and Third,the energy required to distribute these
signals is minimized.

More specifically, we introduce these assumptions: First, the factual branch-
ing is linear preserving of ports or hops hk; and Third, the energy required to
distribute the signal is minimized and is linear preserving in hops.

The first hypothesis, the existence of a fractal pattern implies that the the
network is best described by hk >> pk. We will require that this fractal is linear
preserving in ports. The total number of ports at the k-th level is pkNk.

This implies that
pkNk = pk+1Nk+1

so γk = pk+1
lk

= Nk
Nk+1

= 1
n , so γk = n−1 = γ.

Line preserving flow which minimizes energy transmission of signal has cer-
tain implications. We have the following for hops hk = nhk+1, or δk = hk+1

hk
=

n−1 = δ. This implies, with γ = n−1 , a = 1
3 and

Y = N
1
3 p0 = N

1
3 , h0 = N

1
3

.
Thus, a quantity Y depends on the number of hosts in the network propor-

tional to the 1
3 power of those hosts. Likewise, the average amount of traffic at

port p0 is proportional to a similar quantity of total number of hosts to the 1
3

power.

There seems to be ample support for our hypothesis. If we look at the data
of Paxson and Floyd [1], we note that the variance data is well described by
− 1

3 . Likewise, if we look at the work of Crovella and Bestavros [3], β = 1
3 . For

all file transfers, β = 1
3 while for text files, β = 2

3 .
As an aside, we remark that LAN traffic is also well described by this hy-

pothesis. Leland and co-workers’ [2] data is well supported by a auto correlation
with β = 1

3 .
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8 Application

Consider a layer 4 device (in the OSI model). This device receives packets
from N nodes on the network. It sends the traffic received to a list of servers,
depending on the load. Suppose these servers are designed to do load balancing,
round robin for instance.

From the present work, we know that if the nodes N double, the load will
only grow by 2

1
3 , or 1.26. Depending on the load on the existing servers, we

might not need to add new servers to be used for load balancing.
Namely, if the CPU utilization is less than 79then we do not need to add

servers. But if the utilization is greater than 79
More genereally, if the number of load increases by a factor F, we expect the

load to increase only by F
1
3 . As long as the CPU utilization on the servers is

less than F−
1
3 , we do not need to add more servers.

9 Conclusions

We proposed a novel scaling law for WAN traffic, which predicts that network
dependent quantities scale as integer multiples of 1

3 .
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