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Abstract

This paper looks at some aspects of graph theory from an algebraic point of view. The
focus of the paper is on automorphisms of the graph onto itself, and at vertex-transitive
mappings.

To facilitate the discussion, we introduce some notions from group theory and from
category theory as well.

1.  Introduction

In this paper we will discuss some aspects of algebraic graph theory, relying on the book
by N Biggs [Biggs], but will also make use of concepts from group theory as presented in
N Jacobson’s book [Jacobson], and also use some ideas from category theory as
presented informally by R Geroch [Geroch]. For our graph theory definitions, we will
rely on those of the class text, Clark and Holton [Clark & Holton].

In this chapter we will set up our discussion by introducing some ideas from category
theory. Category theory can be described informally as the branch of mathematics in
which one studies certain definitions in a broader context – mathematics of mathematics,
as it were [Geroch, Ch 2].

A category consists of three things:

i) A class O, with elements will be called objects
ii) A set Mor(A,B), whose elements will be called morphisms from A to B,

and A & B are any two objects
iii) A rule which assigns, for any given objects and any morphism    from A

to B and morphism s from B to C, a morphism   °s  from A to C. This
latter morphism is a composition of    with s. It is subject to the
following two conditions:i) Composition is associative. If A, B, C and D are four objects, and  , s, h are

morphisms from A to B, from B to C and from C to D respectively, then

(h ° s) °   = h ° ( s °  )
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ii) Identities exist. For each object A, there is a morphism fA from A to A (called
the identity morphism on A) with the following property: for any morphism  
from A to B, then

  ° fI =  

if µ is any morphism from C to A, then

fA ° µ = µ

This is the definition of a category.

Geroch give examples of many categories, like sets, groups, vector spaces, associative
algebras, Lie algebras, topological spaces, and so on.

One category we will be using a lot in this paper is that of groups [Geroch Ch 3]. A group
consists of two things:

1. A set G.
2. A rule which, given two elements g and g’ of G, assigns an element of G ( normally

written gg’), with the following conditions:
i) The product is associative. For any three elements g, g’, g” of G,

g (g’g”) = (g g’) g”

ii) An identity exists. There is an element of G, e (the identity), with the following
property:

e g = g e = g

          iii) Inverses exist. Given an element g of G, there is an element of G, g-1  called the
inverse of g, such that

g g-1 = g-1 g = e

It turns out that in some of the applications we will be discussing, we will be using matrix
representations of graphs. To clarify how this is useful, as well as to give a broader
context, let us introduce Geroch’s definition of representations [Geroch Ch 22].

The idea of representations is to represent an object as a collection of morphisms. In this
manner, objects become more concrete – rather than being abstract elements, they do
something, namely act as morphisms. Consider two categories, C and C’. A
representation of object A in C consists of an object P’ in C’together with a morphism
s:I<>Mor(P’, P’) in category C.  Thus, for each element a of object A, we must find a
certain morphism sa  from P’ to itself. This morphism is not arbitrary, but must be such
that s itself is a morphism in category C’.



Jacob, O C CNPE 177: Applied Graph Theory 3

The object A is represented by a bunch of morphisms from P’ to P’ with this
representation (by which a in A goes to morphism sa from P’ to P’) reflecting the
structure within the object A.

As an example, consider an abstract group G. A representation of G (in the category of
the matrix group and matrix multiplication) consists of a group of matrices M, together
with a rule which assigns to each element g of G a linear mapping sg  from group M to M
such that sgg’ = sg ° sg’  and se = f M.

2. Linear Algebra and Graph Theory

We will discuss now some results from Biggs’ book. First, we will look at some results in
linear algebra [Biggs Ch 2].

Let us recall the adjacency matrix A, as in [Clark & Holt, Ch 1], associated with a simple
connected graph G.  Since it is a matrix, we can define its eigenvalues. Together with
their respective multiplicities, we can form the spectrum of G: Given the s eigenvalues h0
> h1....> hs-1 and their respective multiplicities m(h0 ), m(h1 ), ..., m(hs-1 ), the spectrum of
G is

Spec(G) = (h0 , h1  ,..., hs-1 ; m(h0 ), m(h1 ), ..., m(hs-1 ) ).

Thus, the complete graph K4 has the following adjacency matrix A;

A = [0 1 1 1;1 0 1 1; 1 1 0 1; 1 1 1 0]

and a spectrum

Spec(K4  ) = ( 3 –1; 1 3)

We can construct the characteristic polynomial r associated with the graph G out of its
eigenvalues from the eigenvalue equation det (h I – A) = 0

 r(G, h ) = hn + c1h
n-1 + c2 hn-2 + c3 hn-3 + ... + cn.

Proposition 2.3  The coefficients of the characteristic polynomial of a graph G satisfy the
following:

i) c1 = 0 ;
ii) – c2 is the number of edges in G ;
iii) – c3 is twice the number of triangles in G.

Proof  For i ¡ {1,2,3,....,n}, the number (-1)ici is the sum of those principal minors of A
which have i rows and columns. Then,
(1) Since A has zero diagonal, c1 = 0.
(2) A principal minor with two rows and columns with non-zero entry must be of the

form [ 0 1; 1 0 ]. There is one such minor for each pair of adjacent vertices in G, each
with value (-1). Hence (-1)2 c2 = - |E(G)|.
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(3) There are essentially three possibilities for non-trivial principal minors with three
rows and columns: [0 1 0;1 0 0;0 0 0], [0 1 1;1 0 0;1 0 0] and [0 1 1;1 0 1; 1 1 0]. Of
these, only the last is non-zero, with value 2. It corresponds to three mutually
adjacent vertices in G, so we get the description of c3.

Lemma 2.5  The number of walks on length l in G, from a vertex vi to vj, is (A l ) ij.

Proof  The result is true for l = 0, since A 0 = I and for l = 1,
since A1 = A, the adjacency matrix. Suppose it is true for l = k. The set of walks of length
k+1 from vi to vj is in bijective correspondence to the set of walks of length k from vi to vh
adjcent to vj. Thus, the number of walks is

Y {vh, vj} ¡ E(G)    (Ak) ih  = Y h = 1 n  (A k) ih a hj  = (A k+1) ij

So the number of walks of length k+1 from vi  to vj is (A k+1) ij.

Let us defince the algebra of polynomials in the adjacency matrix A the adjacency
algebra A(G).

Proposition 2.6  Let G be a connected graph with adjacency algebra A(G) and diameter
d (as defined in class). Then the dimension of A(G) is at least d+1.

Proof  Let x and y be vertices in G such that d(x,y) = d, and suppose that

x = v0 v1 ....vd = y

is a walk of length d, and vi  ¡ V(G).

Then for each i ¡ {1,2,3,....,d}, there is at least one walk of length i, but no shorter,
joining v0 to vi.Then Ai has non-zero entry in a position where I, A, A2, ...Ai-1 are zero. It
follows then that Ai is not linearly dependent on I, A, A2, ...Ai-1, and that { I, A, A2, ...Ad }
are linearly independent in A(G). Since there are d+1 elements, A(G) has at dimension at
least d+1.

If the adjacency matrix has s distinct eigenvalues, then its minimum polynomial has
degree s, since A is real symmetric. Therefore the dimension of the A(G) is s. We have
the following corollary.

Corollary 2.7  A connected graph G with diameter d has at least d+1 distinct
eigenvalues.

Consider bipartite graphs, as defined in [Clark & Holton, Ch 1]. If we order the vertex set
so that those is X come first, followed by those in Y, then the adjacency matrix A can be
written as

A = [0  B ; Bt  0 ]

where 0 and B are matrices.If x is an eigenvector with eigenvalue h,  and y is obtained
from x by changing the signs of the entries corresponding to entries in Y, then y is an
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eigenvector with eigenvalue -h.  It follows that the spectrum of a bipartite graph is
symmetric with respect to 0.

Recall that Lemma 2.5 said that the total number of closed walks of length l is equal to
tr A l. Since the trace of a matrix is the sum of its eigenvalues, we can express this as

tr A l   = Y h l

In particular, the sum of eigenvalues is zero, the sum of squares is twice the number of
edges, and the sum of cubes is six times the number of triangles.

3. Regular graphs and line graphs

In this section we will focus on regular graphs. A graph is regular, or k-regular if each
vertex has degree k.

Proposition 3.1 Let G be a regular graph of degree k. Then:

(1) k is an eigenvalue of G;
(2) if G is connected, then the multiplicity of k is 1;
(3) for any eigenvalue  h of G, we have | h | <=  k.

Proof
(1) Let u = [1,1,1,....1]t ;  then if A is the adjacency matrix of G, we have Au = ku, since

there are k 1’s in each row. Therefore k is an eigenvalue of G.

(2) Let x = [x1, x2,...xn]t denote any non-zero vector so that Ax = kx and suppose that xj is
the entry in x with the largest absolute value. Since (Ax)j = kxj, we have

Y’ xi = kxj

where Y’ denotes summation over those k vertices vi adjacent to vj. By the maximal
property of xj, we have xj = xi  for all vertices. If G is connected, we can show then that
all entries of x are equal. So x is a multiple of u, hence has multiplicity 1 since the
space of eigenvectors of eigenvalue k is 1.

(3) Suppose that Ay = h y, y not zero and let yj  denote the entry with the largest absolute
      value. By the same argument as in (2), we have Y’ yi = kyj, so

| h ||yj | = |Y’ yi | < = k | yj |

Thus | h | <= k, as required.

Let us define now the line graph L(G), similar to the dual graph of Clark & Holton [Clark
& Holton, Ch 5]. We take the edges of G as the vertices of L(G), and join two vertices in
L(G) whenever the corresponding edges in G have a common vertex. We define an n x m
matrix X thus – where |V(G)| = n and |E(G)| = m: (X)ij = 1 if vi is incident on ej, 0
otherwise.
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Lemma 3.6  Suppose G and X are as above. Let A be the adjacency matrix of G, AL that
of L(G). Then:

(1) XtX = AL + 2Im  ;
(2) If G is regular of degree k, then X Xt = A + kIn ;

Proof
(1) We have

(XtX) ij   = Y (X)li (X)lj   

from which it follows that (XtX) ij is the number of vertices vl  of G which are incident on
both edges ei and ej. The required result follows from the definition for L(G) and AL.

(3) This is proven similarly to (1).

Theorem 3.8  If G is a regular graph of degree k with n vertices and m = 1/2 nk edges,
then

r(L(G); h) = (h+2) m-n r(G; h+2-k)

Proof  We use notation and result of Lemma 3.6. We define two matrices U and V as
follows:

U = [hIn  -X; 0 Im]  and V = [In X; Xt hIm]

Then we have

UV = [hIn – X Xt  0; X t  hIm ] and VU = [hIn  0: lXt  hIm – XtX]

Taking determinants of both of these terms, we get det (UV) = det (VU), so we get

hm det (hIn – X Xt  ) = hn det (hIm – XtX )

Then we have the following:

  r(L(G); h) = det (hIm – AL )

   = det ((h+2)Im – XtX)

   = (h+2)m-n  det ((h+2)In – X Xt )

=  (h+2)m-n  det ((h+2 < k)In – A)

= (h+2) m-n r(G; h+2-k)

Then, if the spectrum of G is
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Spec(G) = (k, h1  ,..., hs-1 ; 1, m(h1 ), ..., m(hs-1  ) )

The spectrum of L(G) is

Spec(L(G)) = (2k < 2  , k-2+h1  ,..., <2 ; 1, m(h1 ), ..., m-n )

If G is Kt, then for the line graph L(Kt ) we get what is called the triangle graph 6t, with
vertices corresponding to the 1/2t(t-1) pairs of numbers from {1,2,3,....t}. The Spec(6t ) is

Spec(6t ) = (2t-4 t-4 –2; 1 t-1 1/2t(t-3) )

Consider now the complement of G, Gc, similar to Clark & Holton’s definition in [Clark
& Holton, Ch1, Ex 1.5.2]. We can see then that

A + Ac = J – I

where Ac is the adjacency matrix for Gc and J is a matrix full of 1’s. Using arguments
similar to those of Theorem 3.8, it can be shown that

(h+k+1) r( Gc; h) = (-1)n(h<i+g+1)  r(G; -h-1)

4. Automorphisms of graphs  

Automorphism of a simple graph G is a permutation / of V(G), such that if {u,v} ¡ E(G)
iff {/(u), /(v)} also ¡ E(G). The set of all automorphisms of G, plus the composition
operation form the automorphism group Aut(G) [Jacobson, Ch 1]. Two vertices x and y
belong to the same orbit if there is an automorphism _ such that _(x) = y. It can be seen
then that d(x) = d(y), x and y have the same degree.

G is vertex-transitive if Aut(G) acts transitively on V(G), meaning that there is only one
orbit. This means that if we have any two vertices u, v, then there is an automorphisms
/  ¡ Aut(G) such that /(u) = v. The action of Aut(G) on V(G) induces an action on E(G)
thus: / {x,y} = {/(x),/(y)}.  We say that G is edge-transitive if this action is transitive, i
e, the automorphism maps one edge into another.

Proposition 15.1  If a connected graph is edge-transitive but not vertex-transitive, then it
is bipartite.

Proof  Let {x,y} be and edge of G, and let X and Y be orbits containing x and y
respectively under the action of Aut(G). It follows from the definition of an orbit that X
and Y are either disjoint or identical. Since G is connected, every vertex z is in some edge
{z,w}, and since G is edge-transitive, z belongs to either X or Y. So X U Y = V(G).
If X = Y = V(G), G is vertex-transitive, contradicting the hypothesis. So X E Y = 0 .
Every edge has one end in X and another in Y, so G is bipartite.

Let represent permutations on V(G) by a matrix P = (pij) such that pij  = 1 if vi=/(vj),  pij   =
0 otherwise.
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Proposition 15.2  Let A be the adjacency matrix of G, and / a permutation of V(G). Then
/ is an automorphism of G iff PA = AP, where P is the permutation matrix of /.

Proof  Let vh = /(vj), and vk = /(vj)  Then we have

(PA)hj = Y phl alj = aij  ;

(AP)hj = Y ahl plj = ahk

Then, AP = PA iff vj and vj are adjacent whenever vh and vk are. That is, iff / is an
automorphism of G.

This means that automorphisms produce multiple eigenvectors corresponding to a given
eigenvalue: AP x = PA x = Ph x = h Px, if x has eigenvalue h, so does Px.

Lemma 15.3  Let h a simple eigenvalue of G, with x the corresponding eigenvector, with
real components. If the permutation matrix P represents an automorphism of Aut(G), then
Px =    +    x.

Proof  If h has multiplicity one, x and Px are linearly dependent; that is, Px = µx, for
some µ complex. Since x and P are real, µ is also real. And, since Ps = I for some integer
s * 1, µ is the sth root of unity. Since h  has multiplicity one, µ =    +   1.

We have now the following theorem:

Theorem 15.4 If all the eigenvalues of a graph G are simple, every automorphism of G
(except for the identity) has order 2.

Proof  Suppose that every eigenvalue of G has multiplicity one. Then, for any
permutation matrix P representing an automorphism of G, and for any eigenvector x, we
have P2 x = x.  The space spanned by the eigenvectors is the whole space of column
vectors, so P2 = I.

For later in our discussion, we introduce two more concepts.

Definition 15.5  Let G be a graph with automorphism group Aut(G). G is symmetric if
for any vertices u,v,x,y of V(G) such that u adjacent ot v, and x adjacent to y, exists an
automorphism _ in Aut(G) so that _ (u) = x and _ (v) = y. We say that G is distance-
transitive if for all vertices u,v,x,y so that d(u,v) = d(x,y), there is an automorphism _ in
Aut(G) so that _ (u) = x and _ (v) = y.

We see that there is the following hierarchy:

distance-transitive => symmetric => vertex-transitive.

Before exploring this in greater depth, let us note a few things about Aut(G). For any
value of n, Aut(Kn) contains n! permutations of its vertices, so it is the symmetric group
Sn This is in agreement with Corollary to Cayley’s theorem for groups in [Jacobson, Ch
1]: Any group is isomorphic to a transformation group, and any finite group of order n is
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isomorphic to a subgroup of the symmetric group Sn. So other graph with n vertices
different than Kn will be isomorphic to a subgroup of Sn.

The automorphism groups Aut(G) and Aug(L(G)) need not have a simple relationship.
L(K2) = K1 so that Aut(K1 ) is trivial, while Aut(K2 ) is not. But there is a group
homomorphism e: Aut(G) -> Aug(L(G)) defined by

(eg) {u,v} = {eu,ev}, where g ¡ Aut(G), {u,v} ¡ E(G)
and
i) e is a monomorphism if G is not K2 ;
ii) e is a epimorphism provided G is not K4, K4 with one or two edges deleted.

We end this section with a remark regarding graphs in which Aut(G) act transitively on
both edges and vertices. It can be shown then that G is regular, and if its degree is odd, G
is symmetric. If the degree is even, the conclusion is a bit murkier.

5. Vertex-transitive graphs

We define first F = Aut(G). The stabilizer subgroup Fv of a vertex v is a subgroup of F
containing those automorphisms which fix v. In the vertex-transitive case, all stabilizer
subgroups Fv  with v ¡ V(G), are conjugate, and therefore isomorphic. The index of Fv  is
[Jacobson, Ch 1.12],

|F: Fv | = |F| / | Fv | = |V(G)|

If each stabilizer Fv is the identity group, then every element of F (except the identity)
does not fix any vertex, and we say that F acts regularly on V(G). In this case the order of
F is equal to the number of vertices n.

There are many vertex-transitive graphs, which can be constructed with a method
developed by Cayley (1878). Let G be any abstract finite group with identity 1; suppose
1 is a set of generators of G, such that

i)  x ¡ 1 => x-1 ¡ 1 

ii) 1 not in  1

Definition 16.1 The Cayley graph C = C(H, 1) is the simple graph whose vertex set and
edge set is defined thus:

V(C) = H, E(C) = {g,h}| g-1h ¡1}

It can be shown that E(C) is well-defined, and that C(H, 1) is a connected graph. If H is
the symmetric group S3 and 1 = {(12), (23), (13)}, then the Cayley graph C(H, 1) is
isomorphic to K3.3. To see this, consider the partition of V(C) thus: X={1, (132), (123)}
and Y = {(13),(23),(12)}. Then mapping will go only from elements from X to Y and
from Y to X.
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Proposition 16.2  (1) The Cayley group C(H, 1 is vertex-transitive.
(2) Suppose that / is an automorphism of H such that /(1) = 1. Then /, viewed as a
permutation on V(C) is a group automorphism fixing the vertex 1.

Proof  (1) For each g in H, we may define a permutation g’ of V(C) = H by the rule g’(h)
= g’h (h ¡ H). This permutation is an automorphism of C, for

{h,k} ¡ E(C) => h-1 k ¡ 1

    => (gh)-1 gk ¡ 1

=> {g’(h), g’(k)} ¡ E(C)

The set of all g’ (g ¡ H) is a group H’, isomorphic to H. H’ is also a subgroup of the full
group of automorphisms of C(H,1), and acts transitively on vertices.

(2) Since / is a group automorphism, it must fix 1. Also, / is graph automorphism, since

 {h,k} ¡ E(C) => h-1 k ¡ 1 => /( h-1 k) ¡ 1

     => /(h)<1 /(k) ¡ 1 

     => {/(h), /(k)} ¡ L(C)

Lemma 16.3  Let G be a connected graph. Then a subgroup H of Aut(G) acts regularly
on vertices iff G is isomorphic to a Cayley group C(H,1), for some set 1 which generates
H.

Proof  Suppose V(G) = {v1,v2,... vn}, and H is a subgroup of Aut(G) acting regularly on
V(C). For 1 <= i <= n, there is a unique hi ¡ H so that hi (v1) = vi. Let

1 = { hi   ¡ N |  vi  is adjacent to v1 in C}

We can check quickly that 1 satisfies requirements for Definition 16.1, and that the
bijection vi <-> hi isa graph automorphism of G with C(H,1).

Conversely, if G = C(H,1), then the group H’ defined in the proof of Proposition 16.2
acts regularly on V(G) and H’ is isomorphic to H.

Lemma 16.3 shows then that if Aut(G) itself acts regularly on V(G), then G is a Cayley
graph C(Aut(G), 1).

Proposition 16.5  Let G be a vertex-transitive graph whose automorphism group
F=Aut(G) is abelian. Then F acts regularly on V(G), and F is an elementary abelian 2-
group.

Proof  If g and h are elements of the abelian group F, and g fixes v, then gh(v) = hg(v)
=h(v) so g fixes h(v) as well. If F is transitive, every vertex is of the form h(v) for some h
in F, so g fixes every vertex. Hence g=1.
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Thus F acts regularly on V(G), so by Lemma 16.3, G is a Cayley graph C(F, 1). Now
since F is Abelain, the map g -> g-1 is an automorphism of F, at it fixes 1 setwise.
Suppose this automorphism is not trivial. Then by part (2) of Proposition 16.2, this
implies that F is not regular. But this is a contradiction. So, g = g-1 for all g in F, so F is of
order 2.

Proposition 16.6  Let G be a vertex-transitive graph with degree k, and let h be a simple
eigenvalue of G. If |V(G)| is odd, then h = k, If |V(G)| is even, h is one of the integers 2_
– k, where 0 <= _ <= k.

Proof  Let x be a real eigenvector corresponding to the simple eigenvalue h, and let P be
a permuation matrix representing an automorphism / of G. If /(vi) = vj then by Lemma
15.3,

xi = (Px) j =    +    xj   

Since G is vertex-transitive, we obtain that all the entries of x have the same absolute
value. We know from previous results that u = [1,1,1,...,1]t is an eigenvector with
eigenvalue k. If h is not k, we must have utx = 0. Which means Y xi = 0. This is not
possible if there are odd summands.

If G has an even number of vertices, choose a vertex vi of G and suppose _ adjacent
vertices vj have xj = xi, while k – _ have xj = - xi. Since (Ax)i = h xi, we get Y’ xj = h xi
and the sum is over vertices adjacent to vj. We obtain

_ xi  - (k – _) xi  = h xi

so h = 2_  - k.

Let us strengthen the assumptions by demanding that G be symmetric. The simple
eigenvalues can be restricted even more.

Proposition 16.7  Let G be a symmetric graph of degree k, and let h be a simple
eigenvalue of G. Then h =    +    k.

Proof  We continue with the notation of the previous Proposition. Let vj and vl be any
two vertices adjacent to vi; then there exists an automorphism / of G so /(vi) = vj and
/(vj) = vl. If P is the permutation matrix representing /, /(vi) = vj implies Px =x and xj =
xl. Thus _ = 0 or k, so h =    +    k.

Note that the eigenvalue –k occurs and is simple iff G is bipartite.

Suppose now that G is a vertex-transitive graph with F= Aut(G). For any vertex v of G,
define

Lv = {g ¡ F | g fixes each vertex adjacent ot v}

Then Lv is a normal subgroup of Fv [Jacobson Ch 1.8] - a subgroup L of F is normal or
self-conjugate if f-1 l f ¡ F for every f ¡ F and l ¡ L.  By the fundemantal theorem of group
homomorphisms, there is a homomorphism from Fv into the group of all permutations of
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the neighbors of v, with kernel Lv - kernel is the inverse of the automorphic map of the
identity.  Therefore, | Fv  : Lv | <= k!, where k is the degree.

Let G be connected vertex-transitive graph and let Fv denote the stabilizer of vertex v. If h
is any automorphism of G for which d(v,h(v)) = 1, and G is symmetric, then h and Fv
generate Aut(G).
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